Skip to content

Advanced Options

Models

All MLX-compatible Whisper models from Hugging Face are supported.

Available Models

Model Size Accuracy Speed RAM
whisper-large-v3-mlx (default) ~3GB Excellent Slow ~8GB
whisper-large-v2-mlx ~3GB Excellent Slow ~8GB
whisper-medium-mlx ~1.5GB Very Good Medium ~4GB
whisper-small-mlx ~500MB Good Fast ~2GB
whisper-base-mlx ~150MB Fair Very Fast ~1GB
whisper-tiny-mlx ~75MB Basic Fastest ~512MB

All models prefixed with mlx-community/

macscribe video.mp4 --model mlx-community/whisper-medium-mlx

When to Use Each Model

  • Large: Accented/technical content, maximum accuracy
  • Medium: General purpose, good balance
  • Small: Clear audio, need speed
  • Base/Tiny: Quick drafts, limited resources

Batch Processing

Process multiple files:

# All files in directory
for file in audio/*.mp3; do
    macscribe "$file" --output "transcripts/$(basename "$file" .mp3).txt"
done

# Save to directory with auto-generated names
for file in *.mp3; do
    macscribe "$file" --output transcripts/
done

Long Content

For videos >2 hours, use a faster model:

macscribe long-video.mp4 --model mlx-community/whisper-medium-mlx

Workflows

Transcription Pipeline

#!/bin/bash
INPUT="$1"
OUTPUT="$2"
MODEL="${3:-mlx-community/whisper-large-v3-mlx}"

macscribe "$INPUT" --model "$MODEL" --output "$OUTPUT"

Text Processing

# Word count
macscribe audio.mp3 --output transcript.txt
wc -w transcript.txt

# Search keywords
macscribe video.mp4 --output transcript.txt
grep -i "keyword" transcript.txt

Version Control

macscribe meeting.mp3 --output transcripts/2024-01-01.txt
git add transcripts/2024-01-01.txt
git commit -m "Add meeting transcript"

Optimization

Speed: Use smaller models

macscribe audio.mp3 --model mlx-community/whisper-small-mlx

Accuracy: Use default (large) model, ensure high-quality audio

Shell Aliases

Add to .bashrc or .zshrc:

# Fast transcription
alias qscribe='macscribe --model mlx-community/whisper-medium-mlx'

# Auto-save
tsave() {
    macscribe "$1" --output "${1%.*}.txt"
}

Troubleshooting

URLs with special characters: Use quotes

macscribe "https://youtube.com/watch?v=id&t=30s"

Corrupted files: Convert first

ffmpeg -i problematic.mp3 fixed.wav
macscribe fixed.wav

Next Steps